
What are degrees of freedom? 

As we were teaching a multivariate statistics course for doctoral students, one of the students in 
the class asked, "What are degrees of freedom? I know it is not good to lose degrees of freedom, 
but what are they?" Other students in the class waited for a clear-cut response. As we tried to 
give a textbook answer, we were not satisfied and we did not get the sense that our students 
understood. We looked through our statistics books to determine whether we could find a more 
clear way to explain this term to social work students. The wide variety of language used to 
define degrees of freedom is enough to confuse any social worker! Definitions range from the 
broad, "Degrees of freedom are the number of values in a distribution that are free to vary for 
any particular statistic" (Healey, 1990, p. 214), to the technical: 

   Statisticians start with the number of terms in 
   the sum [of squares], then subtract the number 
   of mean values that were calculated along the 
   way. The result is called the degrees of freedom, 
   for reasons that reside, believe it or not, in the 
   theory of thermodynamics. (Norman & Streiner, 
   2003, p. 43) 

Authors who have tried to be more specific have defined degrees of freedom in relation to 
sample size (Trochim, 2005; Weinbach & Grinnell, 2004), cell size (Salkind, 2004), the number 
of relationships in the data (Walker, 1940), and the difference in dimensionalities of the 
parameter spaces (Good, 1973). The most common definition includes the number or pieces of 
information that are free to vary (Healey, 1990; Jaccard & Becker, 1990; Pagano, 2004; Warner, 
2008; Wonnacott & Wonnacott, 1990). These specifications do not seem to augment students' 
understanding of this term. Hence, degrees of freedom are conceptually difficult but are 
important to report to understand statistical analysis. For example, without degrees of freedom, 
we are unable to calculate or to understand any underlying population variability. Also, in a 
bivariate and multivariate analysis, degrees of freedom are a function of sample size, number of 
variables, and number of parameters to be estimated; therefore, degrees of freedom are also 
associated with statistical power. This research note is intended to comprehensively define 
degrees of freedom, to explain how they are calculated, and to give examples of the different 
types of degrees of freedom in some commonly used analyses. 

 

DEGREES OF FREEDOM DEFINED 

In any statistical analysis the goal is to understand how the variables (or parameters to be 
estimated) and observations are linked. Hence, degrees of freedom are a function of both sample 
size (N) (Trochim, 2005) and the number of independent variables (k) in one's model (Toothaker 
& Miller, 1996; Walker, 1940; Yu, 1997). The degrees of freedom are equal to the number of 
independent observations (N), or the number of subjects in the data, minus the number of 
parameters (k) estimated (Toothaker & Miller, 1996; Walker, 1940). A parameter (for example, 
slope) to be estimated is related to the value of an independent variable and included in a 
statistical equation (an additional parameter is estimated for an intercept in a general linear 
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model). A researcher may estimate parameters using different amounts or pieces of information, 
and the number of independent pieces of information he or she uses to estimate a statistic or a 
parameter are called the degrees of freedom (df) (HyperStat Online, n.d.). For example, a 
researcher records income of N number of individuals from a community. Here he or she has 
Nindependent pieces of information (that is, N points of incomes) and one variable called 
income (k);in subsequent analysis of this data set, degrees of freedom are associated with both N 
and k. For instance, if this researcher wants to calculate sample variance to understand the extent 
to which incomes vary in this community, the degrees of freedom equal N - k. The relationship 
between sample size and degrees of freedom is positive; as sample size increases so do the 
degrees of freedom. On the other hand, the relationship between the degrees of freedom and 
number of parameters to be estimated is negative. In other words, the degrees of freedom 
decrease as the number of parameters to be estimated increases. That is why some statisticians 
define degrees of freedom as the number of independent values that are left after the researcher 
has applied all the restrictions (Rosenthal, 2001; Runyon & Haber, 1991); therefore, degrees of 
freedom vary from one statistical test to another (Salkind, 2004). For the purpose of clarification, 
let us look at some examples. 

A Single Observation with One Parameter to Be Estimated 

If a researcher has measured income (k = 1) for one observation (N = 1) from a community, the 
mean sample income is the same as the value of this observation. With this value, the researcher 
has some idea of the mean income of this community but does not know anything about the 
population spread or variability (Wonnacott & Wonnacott, 1990). Also, the researcher has only 
one independent observation (income) with a parameter that he or she needs to estimate. The 
degrees of freedom here are equal to N - k. Thus, there is no degree of freedom in this example 
(1 - 1 = 0). In other words, the data point has no freedom to vary, and the analysis is limited to 
the presentation of the value of this data point (Wonnacott & Wonnacott, 1990; Yu, 1997). For 
us to understand data variability, N must be larger than 1. 

Multiple Observations (N) with One Parameter to Be Estimated 

Suppose there are N observations for income. To examine the variability in income, we need to 
estimate only one parameter (that is, sample variance) for income (k), leaving the degrees of 
freedom of N - k. Because we know that we have only one parameter to estimate, we may say 
that we have a total of N - 1 degrees of freedom. Therefore, all univariate sample characteristics 
that are computed with the sum of squares including the standard deviation and variance have N 
- 1 degrees of freedom (Warner, 2008). 

Degrees of freedom vary from one statistical test to another as we move from univariate to 
bivariate and multivariate statistical analysis, depending on the nature of restrictions applied 
even when sample size remains unchanged. In the examples that follow, we explain how degrees 
of freedom are calculated in some of the commonly used bivariate and multivariate analyses. 

Two Samples with One Parameter (or t Test) 
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If the assumption of equal variance is violated and the two groups have different variances as is 
the case in this example, where the folded F test or Levene's F weighted statistic is significant, 
indicating that the two groups have significantly different variances, the value for degrees of 
freedom (100) is no longer accurate. Therefore, we need to estimate the correct degrees of 
freedom (SAS Institute, 1985; also see Satterthwaite, 1946, for the computations involved in this 
estimation). 

We can estimate the degrees of freedom according to Satterthwaite's (1946) method by using the 
following formula: 

df Satterthwaite = 

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] 

where [n.sub.1] = sample size of group 1, [n.sub.2] = sample size of group 2, and [S.sub.1] and 
[S.sub.2] are the standard deviations of groups 1 and 2, respectively. By inserting subgroup data 
from Table 1, we arrive at the more accurate degrees of freedom as follows: 

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] 

Because the assumption of equality of variances is violated, in the previous analysis the 
Satterthwaite's value for degrees of freedom, 96.97 (SAS rounds it to 97), is accurate, and our 
earlier value, 100, is not. Fortunately, it is no longer necessary to hand calculate this as major 
statistical packages such as SAS and SPSS provide the correct value for degrees of freedom 
when the assumption of equal variance is violated and equal variances are not assumed. This is 
the fourth value for degrees of freedom in our example, which appears in Table 1 as 97 in SAS 
and 96.967 in SPSS. Again, this value is the correct number to report, as the assumption of equal 
variances is violated in our example. 

Comparing the Means of g Groups with One Parameter (Analysis of Variance) 

* The second type of degrees of freedom, called the within-groups degrees of freedom or error 
degrees of freedom, is derived from subtracting the model degrees of freedom from the corrected 
total degrees of freedom. The within-groups degrees of freedom equal the total number of 
observations minus the number of groups to be compared, [n.sub.1] ... [n.sub.g] - g This value 
also accounts for the denominator degrees of freedom for calculating the F statistic in an 
ANOVA. 

* Calculating the third type of degrees of freedom is straightforward. We know that the sum of 
deviation from the mean or [summation]([Y.sub.i] - [bar.Y]) = 0.We also know that the total sum 
of squares or [summation][([Y.sub.i] - [bar.Y]).sup.2] is nothing but the sum of [N.sup.2] 
deviations from the mean. Therefore, to estimate the total sum of squares [summation][([Y.sub.i] 
-[bar.Y]).sup.2], we need only the sum of N - 1 deviations from the mean. Therefore, with the 
total sample size we can obtain the total degrees of freedom, or corrected total degrees of 
freedom, by using the formula N- 1. 
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In Table 2, we show the SAS and SPSS output with these three different values of degrees of 
freedom using the ANOVA procedure. The dependent variable, literacy rate, is continuous, and 
the independent variable, political freedom or FREEDOMX, is nominal. Countries are classified 
into three groups on the basis of the amount of political freedom each country enjoys: Countries 
that enjoy high political freedom are coded as 1 (n = 32), countries that enjoy moderate political 
freedom are coded as 2 (n = 34), and countries that enjoy no political freedom are coded as 3 (n 
= 36). The mean literacy rates (dependent variable) of these groups of countries are examined. 
The null hypothesis tests the assumption that there is no significant difference in the literacy 
rates of these countries according to their level of political freedom. 

The first of the three degrees of freedom, the between-groups degrees of freedom, equals g - 1. 
Because there are three groups of countries in this analysis, we have 3 - 1 = 2 degrees of 
freedom. This accounts for the numerator degrees of freedom in estimating the F statistic. 
Second, the within-groups degrees of freedom, which accounts for the denominator degrees of 
freedom for calculating the F statistic in ANOVA, equals [n.sub.1] ... [n.sub.g] - g. These 
degrees of freedom are calculated as 32 34 36 - 3 = 99. Finally, the third degrees of freedom, the 
total degrees of freedom, are calculated as N - 1 (102 - 1 = 101). When reporting F values and 
their respective degrees of freedom, researchers should report them as follows: The independent 
and the dependent variables are significantly related [F(2, 99) = 16.64,p <.0001]. 

Degrees of Freedom in Multiple Regression Analysis 

We skip to multiple regression because degrees of freedom are the same in ANOVA and in 
simple regression. In multiple regression analysis, there is more than one independent variable 
and one dependent variable. Here, a parameter stands for the relationship between a dependent 
variable (Y) and each independent variable (X). One must understand four different types of 
degrees of freedom in multiple regression. 

* The first type is the model (regression) degrees of freedom. Model degrees of freedom are 
associated with the number of independent variables in the model and can be understood as 
follows: 

A null model or a model without independent variables will have zero parameters to be 
estimated. Therefore, predicted Y is equal to the mean of Y and the degrees of freedom equal 0. 

A model with one independent variable has one predictor or one piece of useful information (k = 
1) for estimation of variability in Y. This model must also estimate the point where the 
regression line originates or an intercept. Hence, in a model with one predictor, there are (k 1) 
parameters--k regression coefficients plus an intercept--to be estimated, with k signifying the 
number of predictors. Therefore, there are [(k 1) - 1], or k degrees of freedom for testing this 
regression model. 

Accordingly, a multiple regression model with more than one independent variable has some 
more useful information in estimating the variability in the dependent variable, and the model 
degrees of freedom increase as the number of independent variables increase. The null 
hypothesis is that all of the predictors have the same regression coefficient of zero, thus there is 
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only one common coefficient to be estimated (Dallal, 2003). The alternative hypothesis is that 
the regression coefficients are not zero and that each variable explains a different amount of 
variance in the dependent variable. Thus, the researcher must estimate k coefficients plus the 
intercept. Therefore, there are (k 1) - 1 or k degrees of freedom for testing the null hypothesis 
(Dallal, 2003). In other words, the model degrees of freedom equal the number of useful pieces 
of information available for estimation of variability in the dependent variable. 

* The second type is the residual, or error, degrees of freedom. Residual degrees of freedom in 
multiple regression involve information of both sample size and predictor variables. In addition, 
we also need to account for the intercept. For example, if our sample size equals N, we need to 
estimate k 1 parameters, or one regression coefficient for each of the predictor variables (k) plus 
one for the intercept. The residual degrees of freedom are calculated N- (k 1). This is the same as 
the formula for the error, or within-groups, degrees of freedom in the ANOVA. It is important to 
note that increasing the number of predictor variables has implications for the residual degrees of 
freedom. Each additional parameter to be estimated costs one residual degree of freedom (Dallal, 
2003). The remaining residual degrees of freedom are used to estimate variability in the 
dependent variable. 

* The third type of degrees of freedom is the total, or corrected total, degrees of freedom. As in 
ANOVA, this is calculated N - 1. 

* Finally, the fourth type of degrees of freedom that SAS (and not SPSS) reports under the 
parameter estimate in multiple regression is worth mentioning. Here, the null hypothesis is that 
there is no relationship between each independent variable and the dependent variable. The 
degree of freedom is always 1 for each relationship and therefore, some statistical software, such 
as SPSS, do not bother to report it. 

In the example of multiple regression analysis (see Table 3), there are four different values of 
degrees of freedom. The first is the regression degrees of freedom. This is estimated as (k 1) - 1 
or (6 1) - 1 = 6, where k is the number of independent variables in the model. Second, the 
residual degrees of freedom are estimated as N - (k 1). Its value here is 99 - (6 1) = 92. Third, the 
total degrees of freedom are calculated N - 1 (or 99 -1 = 98). Finally, the degrees of freedom 
shown under parameter estimates for each parameter always equal 1, as explained above. F 
values and the respective degrees of freedom from the current regression output should be 
reported as follows: The regression model is statistically significant with F(6, 92) = 44.86,p < 
.0001. 

Degrees of Freedom in a Nonparametric Test 

Pearson's chi square, or simply the chi-square statistic, is an example of a nonparametric test that 
is widely used to examine the association between two nominal level variables. According to 
Weiss (1968) "the number of degrees of freedom to be associated with a chi-square statistic is 
equal to the number of independent components that entered into its calculation" (p. 262). He 
further explained that each cell in a chi-square statistic represents a single component and that an 
independent component is one where neither observed nor expected values are determined by the 
frequencies in other cells. In other words, in a contingency table, one row and one column are 
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fixed and the remaining cells are independent and are free to vary. Therefore, the chi-square 
distribution has (r - 1) x (c - 1) degrees of freedom, where r is the number of rows and c is the 
number of columns in the analysis (Cohen, 1988; Walker, 1940; Weiss, 1968). We subtract one 
from both the number of rows and columns simply because by knowing the values in other cells 
we can tell the values in the last cells for both rows and columns; therefore, these last cells are 
not independent. 

Readers may note that there are three values under degrees of freedom in Table 4. The first two 
values are calculated the same way as discussed earlier and have the same values and are 
reported most widely. These are the values associated with the Pearson chi-square and likelihood 
ratio chi-square tests. The final test is rarely used. We explain this briefly. The degree of freedom 
for the Mantel--Haenszel chisquare statistic is calculated to test the hypothesis that the 
relationship between two variables (row and column variables) is linear; it is calculated as (N- 1) 
x [r.sup.2], where [r.sup.2] is the Pearson product-moment correlation between the row variable 
and the column variable (SAS Institute, 1990). This degree of freedom is always I and is useful 
only when both row and column variables are ordinal. 

CONCLUSION 

Yu (1997) noted that "degree of freedom is an intimate stranger to statistics students" (p. 1). This 
research note has attempted to decrease the strangeness of this relationship with an introduction 
to the logic of the use of degrees of freedom to correctly interpret statistical results. More 
advanced researchers, however, will note that the information provided in this article is limited 
and fairly elementary. As degrees of freedom vary by statistical test (Salkind, 2004), space 
prohibits a more comprehensive demonstration. Anyone with a desire to learn more about 
degrees of freedom in statistical calculations is encouraged to consult more detailed resources, 
such as Good (1973), Walker (1940), and Yu (1997). 

Finally, for illustrative purposes we used World Data that reports information at country level. In 
our analysis, we have treated each country as an independent unit of analysis. Also, in the 
analysis, each country is given the same weight irrespective of its population size or area. We 
have ignored limitations that are inherent in the use of such data. We warn readers to ignore the 
statistical findings of our analysis and take away only the discussion that pertains to degrees of 
freedom. 
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